
Model of electron tunneling coupled to torsional vibrations: Exact
solution and study of performance of approximation methods

Lukáš Gráf, Martin Čížek n

Charles University in Prague, Faculty of Mathematics and Physics, Institute of Theoretical Physics, V Holešovičkách 2, 180 00 Praha 8, Czech Republic

H I G H L I G H T S

� A 2D model of the electron interaction with molecular vibrations is solved.
� Various transmission functions are calculated accurately numerically.
� The exact results are compared with various approximations.
� The validity of approximations is discussed.
� The excitation of the vibrational degree of freedom is detailed.
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a b s t r a c t

A two dimensional model for the electron interaction with molecular vibrations in molecular junctions is
proposed. Alternatively the model can be applied to tunneling through a cylindrical nano-structure. The
transmission function is calculated accurately numerically. The exact results are then compared with
various approximations: (1) completely frozen vibrations for very light molecule, (2) Chase approxima-
tion for very heavy molecule, and (3) discrete-state-in-continuum model in resonant regime. The
validity of these approximations is discussed in terms of the characteristic time-scales and coupling
strengths. The excitation of the vibrational degree of freedom and the emergence of prominent threshold
structures in the strong coupling regime are discussed in more details.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Molecular electronics is promising field of research that may
lead not only to ultimate miniaturization of the electronic devices
but also to complete change of paradigm in the chip production
[1]. Prototypical device for study of the conductive properties of
individual molecules is represented by molecular junction, which
consists of two microscopic electrodes bridged by single molecule,
covalently bonded to the electrodes. First such device has been
constructed in late 90s [2]. Since then this field of research
substantially advanced considering both the experimental techni-
ques and theoretical methods to describe such devices (see for
example [3,4] for recent reviews).

Calculation of the current conduction properties of a molecular
junction represents a great challenge for the theory (see for
example [5–7] for reviews). The theory is even more challenging
when the vibrational degrees of freedom of the molecule are taken
into account (see for example [8–13]).

One of the key difficulties is the many-particle nature of the
current conduction in the junction due to the presence of Fermi
sea of electrons. It is usually treated with the nonequilibrium-
Green's function formalism considering the electron–vibrational
coupling as a perturbation [8]. We take different point of view by
considering the current conduction as a sequential scattering of
individual electrons through the junction [14,15]. Although this
approximation does not take into account the coupling of elec-
trons within the Fermi sea correctly it allows us to concentrate on
the difficulties due to the coupling of the electronic and the
vibrational motion. In our model, we do not have to restrict
neither to a small values of vibrational coupling nor to harmonic
vibrations like in the most of the studies of molecular junctions.

This approximation also links the problem of theoretical
description of the molecular junction to the theory of electron
scattering from the molecules in gas phase [16,17].

There are number of approximations used to treat the problem of
vibrations of the molecules in the molecular junction and their
interaction with electronic degrees of freedom. First, in many
calculations the vibrations are completely ignored. The authors just
assume that the atoms in the molecule are sitting in their equilibrium
positions and do not move. This may be good approximation if the
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electron-transport properties of the molecule are not much influ-
enced by the position of the atoms. The simplest approximation
including vibrations takes the positions of the atoms fixed on the first
place, but then averages the transmission function of the junction
over vibrational wave-functions of the molecules. In the context of
electron-molecule scattering this approach is known as Chase or
adiabatic-nuclei approximation [18,16]. The same approach is also
used in the molecular electronics calculations (see for example [19]).

Another frequently used approach is based on the projection-
operator formalism of Feshbach [20,16]. It assumes that the
electron can only get through the junction through a localized
state, which is usually called the discrete state. The electron
dynamics is thus reduced to a model of the discrete state in
continuum which is coupled to vibrational dynamics. This is very
powerful approach in some cases [16], but it is rarely used in the
full form, because it leads to nonlocal, energy-dependent effective
term in the effective interaction. This nonlocal term is often
replaced by local complex potential (LCP) [16,21], which is com-
putationally much easier to handle. This approximation is usually
called wide band limit in context of solid state physics.

In this paper we propose simple exactly solvable model for the
transmission of an electron through a molecular junction, where it
can interact with one vibrational degree of freedom. The model is
introduced in the following paragraph. The method of exact
solution of the dynamics and the formula for the transmission
function are presented in Section 2. Section 3 is devoted to
discussion of resulting transmission function. We stress the under-
standing of the physics behind the structures observed in the
transmission functions and their description in various approx-
imation methods mentioned above. Since we have exact solution
in our model the present paper can serve as a benchmark for the
performance of the approximation methods in various transport
regimes. We conclude with Section 4 summarizing the results and
suggesting further extension of the present approach in the future.

1.1. Description of the model

A simple model to mimic the behavior of an inelastic electron
tunneling through a molecular junction is introduced here. The
system we have in mind is schematically represented in Fig. 1.
A molecule capable of the torsional vibrational motion is captured
between two electrodes. We consider a motion of a single electron,
which is freely moving inside the electrodes. It can also jump to
the molecule through a potential barrier either from the left or
from the right electrode. The strength of the barrier is assumed to
depend on the orientation of the molecule in the junction. Such
system is described with the model hamiltonian

H ¼ � 1
2me

∂2

∂x2
� 1
2I

∂2

∂φ2þλLðφÞδðxþaÞþλRðφÞδðx�aÞ; ð1Þ

where the coordinate x describes the linear motion of the electron
through the junction and the coordinate φ is the torsional angle for
the molecule. The mass of the electron me and the offset of the
barriers a can be eliminated by scaling of the coordinate x and the
energy. We thus setme ¼ a¼ 1. The coordinate φAð0;2πÞ cannot be
scaled and the moment of inertia of the molecule I is an important
parameter influencing the character of the behavior of the system.

The strength of the barrier between the molecule and the left/right
electrode is λLðφÞ and λRðφÞ respectively. Its φ-dependence drives
the coupling of the electronic and the vibrational motion.

To keep the model simple we assume that the φ-dependence is
given by two lowest terms in the Fourier series expansion

λl ¼ αlþβl cos ðφ�φlÞ; ð2Þ
where l¼ L;R and αl, βl, φl are real constants. The constant α thus
controls the strength of the barrier, the ratio v¼ β=α the strength of
the electron–vibration coupling and the difference φ0 ¼φR�φL the
asymmetry of the junction (we can set φL ¼ 0 without loss
of generality). The assumption (2) is motivated by the behavior
of the coupling in the molecules consisting of several benzyl rings.
The cosine term results from the overlap of two π-orbital systems
[22–25]. The suggested coupling functions λl correspond to the
situation, where the part of the molecule undergoing the torsional
motion is connected to the electrodes through additional benzyl rings.

There is an alternative interpretation of the model just
described. The same model hamiltonian describes a motion of an
electron on the surface of a cylinder with two barriers that break
the axial symmetry. The coordinates x and φ parameterize the
surface of the cylinder. The moment of inertia I ¼meR

2 depends on
the radius R of the cylinder. The hamiltonian (1) can thus be
understood as the description of the electron tunneling through a
cylindrical nano-structure with double barrier. This alternative
interpretation of the model is schematically represented in Fig. 2.

Before explaining the method of the solution of the electron
scattering through the junction, we would like to discuss briefly the
relevant parameter ranges. The parameter I gives the moment of
inertia in units mea2. In realistic molecular junctions we expect the
values of the order of 103�104. If the model is interpreted as an
electron tunneling through the nano-structure (Fig. 2), the value of I
can be tuned arbitrarily depending on the aspect ratio of the device.
Another important parameters are the strength of the barriers αl and
the vibrational coupling strength v¼ β=α. Since the nature of the
bonding of a molecule to the electrodes can vary from strong covalent
bond to very loose or no bonding (tunneling setup), these values can
also be tuned quite freely to investigate different transport regimes.

2. Full numerical solution of the problem

The problem of the single electron transmission through the
double barrier described by model hamiltonian (1) can be solved
by applying the scattering boundary conditions to a corresponding
stationary Schrod̈inger equation. We will rather employ the
scattering theory formalism based on the splitting of the Hamilto-
nian (1) into the kinetic and the potential energy terms

H¼H0þV ;

H0 ¼ �1
2
∂2

∂x2
� 1
2I

∂2

∂φ2;

V ¼ λLðφÞδðxþ1ÞþλRðφÞδðx�1Þ:
The general stationary state for the hamiltonian H0 can obviously
be written as a linear combination of separable terms jk〉jm〉, where

ϕ

Fig. 1. A schematic representation of the molecular junction with a torsional
vibrational mode.

ϕ

x

ΛL ΛR

-a a

Fig. 2. Alternative interpretation of the model – electron motion on a surface of a
cylinder with double barrier.
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(in coordinate representation)

ϕmðφÞ � 〈φjm〉¼ 1ffiffiffiffiffiffi
2π

p eimφ;

〈xjk〉¼ 1ffiffiffiffiffiffi
2π

p eikx;

and the quantum numbers m and k, are related to the energy
through the relation:

E¼ 1
2
k2þm2

2I
: ð3Þ

In this work we will treat the collision of the electron with
momentum k40 (electron coming from the left) and the junction
initially in the ground vibrational state mi¼0. The full wave
function of this scattering problem can be found as the unique
solution of the Lippmann–Schwinger equation:

jψ 〉¼ jk〉jmi〉þG0ðEÞV jψ 〉; ð4Þ

where the retarded Green's function G0ðEÞ is given by the standard
expression ðEþ �H0Þ�1. It is convenient to expand the wave
function jψ 〉 in the free rotor basis ϕmðφÞ
ψ ðx;φÞ ¼∑

m
ψmðxÞϕmðφÞ; ð5Þ

where the sum runs over m¼ 0; 71; 72;…; 7M. The maximum
value of the angular momentum M is in principle infinite, but for
the practical calculation we fix it to some sufficiently large finite
value (see below). The Green's function G0ðEÞ is diagonal in this
basis, with the diagonal elements given by the one dimensional
free-particle Green's function:

〈x;mjG0ðEÞjx0;m0〉¼ 1
ikm

δmm0eikmjx� x0 j: ð6Þ

The value of the momentum km ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E�m2=I

p
follows from the

energy conservation relation (3). For the closed channels with
m4

ffiffiffiffiffiffiffi
2IE

p
, we must choose the value with Im km40, in order to

get the retarded Green's function, while for the open channels km
is the positive real number. The Lippmann–Schwinger equation (4)
then reads (expansion in the free rotor basis)

ψmðxÞ ¼
1
2π

δmmie
ikmxþ 1

ikm
∑
m0

eikm jxþ1jΛðLÞ
mm0ψm0 ð�1Þþeikm jx�1jΛðRÞ

mm0ψm0 ð1Þ
n o

;

ð7Þ
where we have introduced the matrix elements

ΛðlÞ
mm0 ¼ 〈mjλljm0〉¼ 1

2π

Z 2π

0
λlðφÞeiðm

0 �mÞφdφ; ð8Þ

expressing the angular dependence of the barrier height in the
free rotor basis. Notice that this form of the Lippmann–Schwinger
equation fixes the whole x-dependence of the wave function based
on the knowledge of the wave function in the barrier points
x¼ 71. Substituting these two values of x in (7), we get the linear
system of equations for 2ð2Mþ1Þ components of the vectors
Ψ 7 � fψmð71Þgm ¼ �M;…;M , which can be written in the matrix
form:

Ψ �
Ψ þ

 !
¼

ΦðiÞ
�

ΦðiÞ
þ

0
@

1
Aþ

G� � G� þ
Gþ � Gþ þ

 !
ΛðLÞ 0
0 ΛðRÞ

 !
Ψ �
Ψ þ

 !
; ð9Þ

where we have introduced the diagonal matrices Gþ þ ¼
G� � � diagf1=ikmg, Gþ � ¼ G� þ � diagfð1=ikmÞe2ikm g and each vec-
torΦðiÞ

7 has only one nonzero element e7 ikm=
ffiffiffiffiffiffi
2π

p
for m¼mi. The

equation can be solved directly by matrix inversion. The T-matrix
elements T þ

mmi
for transmission and T �

mmi
for reflection with the

junction left in the final state m¼mf then read

T þ
mmi

¼ 1ffiffiffiffiffiffi
2π

p ∑
m0
½eikmΛðLÞ

mm0ψm0 ð�1Þþe� ikmΛðRÞ
mm0ψm0 ð1Þ�; ð10Þ

T �
mmi

¼ 1ffiffiffiffiffiffi
2π

p ∑
m0
½e� ikmΛðLÞ

mm0ψm0 ð�1ÞþeikmΛðRÞ
mm0ψm0 ð1Þ�: ð11Þ

The corresponding transmission and reflection probabilities are
then expressed as a square of the S-matrix elements

PT
mmi

¼ δmmi �
2πiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmkmi

p T þ
mmi

�����
�����
2

; ð12Þ

PR
mmi

¼ 2πiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmkmi

p T �
mmi

�����
�����
2

: ð13Þ

The total probabilities are simply the sums over all the out-
going channels

Pl ¼∑
m
Pl
mmi

: ð14Þ

It is also possible to calculate the mean value of the angular
momentum after the collision

〈m〉¼∑
m
mðPL

mmi
þPR

mmi
Þ: ð15Þ

3. Discussion and the results

We have shown how to calculate the transmission and the
reflection probabilities in the previous section. It is simple to
implement the method. The only approximation made is the
expansion of the φ-dependence of the wavefunction in the Fourier
basis, which is limited to finite number of terms. Since this
dependence is smooth, the fast convergence with the parameter
M is expected. We checked that the accuracy better then 10
decimal digits is achieved with M¼50, which is the value used
throughout this paper.

Before showing the results for the full calculation we will
discuss the possible regimes of the transport in the model. This
analysis is based on the typical energy and time-scales.

3.1. 1D double barrier scattering

The typical time-scales for the torsional vibrations are inversely
proportional to the spacing of the vibrational levels ΔEm � ð1=2IÞ.
For low collision energies E5ΔEm or small moment of inertia I the
torsional vibrations are completely frozen and we end up with the
simplified model of scattering of electron in 1D from the double
barrier described by hamiltonian

H1D ¼ �1
2
∂2

∂x2
þλLδðxþ1ÞþλRδðx�1Þ: ð16Þ

The constants λL, λR are the mean values of the functions λlðφÞ
averaged over the initial vibrational state

λα ¼ 〈mijλαðφÞjmi〉¼
Z

jϕmi
ðφÞj2λαðφÞdφ: ð17Þ

The scattering of the electron in this case can be solved with the
same method as above, except that the quantum number m¼mi is
conserved, i.e. the column vectors Ψ 7 reduce to single numbers
and the system of Eqs. (9) reduces to two equations, that can be
solved by hand. This procedure leads to the transmission and the
reflection probabilities

PT ¼
k2

λLλRe4ik�ðλL� ikÞðλR� ikÞ

�����
�����
2

ð18Þ
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PR ¼
λLe�2ikðλR� ikÞ�λRe2ikðλLþ ikÞ
λLλRe4ik�ðλL� ikÞðλR� ikÞ

�����
�����
2

: ð19Þ

The results for the one dimensional case and for λL ¼ λR ¼ 2:0
are shown in Fig. 3 (solid line). The shape of the transmission
function is typical for the double barrier tunneling, characterized
by multiple resonance peaks, which become broader for higher
energies.

Before going any further we will discuss briefly the width and
the position of these peaks. They can be found from the analysis of
the position of the S-matrix poles in the complex energy plain. In
our case these peaks are related to complex zeros of the denomi-
nator in (18). As a rough estimate we can take the values
kR ¼ nπ=2, for n¼ 1;2;…, which are the poles of (18) in the limit
λα-1. This approximation gives the position of the resonance
peaks at E1 ¼ π2=861:2 and E2 ¼ π2=264:9. Notice that these
energies coincide with the eigen-energies of the particle trapped
in the infinitely deep box located in interval ð�1;1Þ. The peaks in
Fig. 3 are located at little lower energies. It is not difficult to
calculate the exact position of the poles of (18) numerically, or to
find few more terms of the perturbation series of kR in powers of
1=λα . We will concentrate on the first pole (corresponding to the
first peak) and denote its position in complex energy plane
E¼ 1=2k2R ¼ Er� i=2Γ. In the symmetric case λL ¼ λR � λ the per-
turbation calculation in the second order in 1=λ gives

Er ¼
π2

8
1�1

λ
þ3
4
1

λ2

� �
; ð20Þ

Γ ¼ π3

16λ2
: ð21Þ

The resulting value Er¼0.85 corresponds well to the position of
the peak in Fig. 3, but the width Γ ¼ 0:48 is overestimated by
factor of 2. This is no surprise since the formula (21) is the first
term in the expansion in 1=λ, which is not expected to converge
fast for λ¼ 2. Still we have got a good order of magnitude estimate,
which will even be better for higher λ.

Fig. 3 also shows results of the full calculation for small
moments of inertia. The transmission function PT(E) for I¼0.1
(dotted curve) follows closely the exact formula for the 1D case.
For higher value I¼0.5 (long dashes) the transmission starts to
deviate from the 1D formula in the region of the second peak. This
is consequence of the fact that the 1D approximation is expected
to work better at low energies. The lowest excited state of
torsional vibrations now appears as a small peak at energy of
1.8, which is 1=2I above the main resonance peak. Even the shape

of the main resonance peak at E¼0.8 becomes deformed for
higher moments of inertia I¼1.0, 5.0.

The values of I used in the previous discussion are still far lower
than the realistic values expected for real molecules (thousands).
The usefulness of the 1D approximation, understood as the low
energy approximation, may therefore be questionable. On the
other hand, the 1D approximation also works well in the limit of
the small vibrational coupling. The extreme case is considering no
coupling at all, which is achieved by setting βl ¼ 0 in our model
(see (2)), i. e. λlðφÞ ¼ λ l, independent of φ. The kinetic energy of the
torsional vibrations �ð1=2IÞð∂2=∂φ2Þ then commutes with the full
Hamiltonian (1) and the quantum number m¼mi is conserved
exactly in the collision.

Fig. 4 compares the transmission function for the full calcula-
tion with the results of 1D model again. This time the parameters
of the model are αL ¼ αR ¼ 2:0, φ0 ¼ 1:0, I¼10 and βL ¼ βR ¼ β. The
vibrational coupling is characterized by number v¼ β=α. The case
v¼0 represents the uncoupled system and the transmission
coincides with the analytic 1D formula where λ¼ α. Increasing
the coupling parameter v, we start to deviate more and more form
the 1D case. For v¼1 the simple picture of double barrier
scattering that created the two sharp peaks breaks.

3.2. Chase approximation

In the preceding section we presented the 1D model as the
low-energy limit or the low-coupling limit of the full problem.
When the electron interaction with vibrational degrees of freedom
of the molecule is considered, the most important role of the 1D
model lies in its potential to describe the limit of the heavy
molecule I-1. The timescale of the torsional vibrations for a very
heavy molecule is supposed to be long. If the scattering of the
electron is happening on a much shorter timescale, we can expect
that the vibrational coordinate φ is fixed during the course of the
collision. The transmission function pT ðφ; EÞ can thus be calculated
using analytic formula (18) for 1D model using λlðφÞ for the fixed
value of φ, which has to be averaged over the distribution of the
angles jϕmi

ðφÞj2 in the initial state

PChase
T ðEÞ ¼

Z
pT ðφ; EÞjϕmi

ðφÞj2 dφ ð22Þ

The same approach is known in the description of electron
scattering from the molecules in gas phase as the Chase approx-
imation [18].

The performance of this approximation is shown in Fig. 5. The
parameters of the model are the same as in Fig. 4 for v¼1 and for
increasing values of I¼1, 5, 10, 100. It is obvious that the curves
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and the deviations for moderately coupled torsional vibrations β=α¼ 0:5 and for
small moments of inertia I¼0.1, 0.5, 1.0, 5.0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

Tr
an

sm
is

si
on

 p
ro

ba
bi

lit
y

Electron energy

1D
v=0.2
v=0.4
v=1.0

Fig. 4. Transmission functions for increasingly large coupling v¼ 0;0:2;0:4;1:0 and
for moderate moment of inertia I¼10.

L. Gráf, M. Čížek / Physica E 63 (2014) 36–44 39



gradually approach Chase approximation (22). In general, this
approximation performs better for larger energies, as expected
from the argument about the time-scales above. To understand the
shape of the limit curve we also show the plot of function pT ðφ; EÞ
in Fig. 6. Let us remind that it is ϕmi

ðφÞ ¼ const: in our calculation.
The Chase approximation is thus simply average of the function
pT ðφ; EÞ over all angles.

3.3. Local complex potential approximation

Introducing the Chase approximation in the previous section
we omitted to give more rigorous condition for its validity. The
relevant timescales can be estimated in the resonance regime
λb1. The width Γ of the resonance peak is then well approxi-
mated by formula (21). The timescale for electron tunneling
through the molecular junction is inversely proportional to Γ.
The Chase approximation is thus expected to work well for
Γ � λ�2b I�1. Problems are expected for very narrow resonances.
We demonstrate this in Fig. 7. The transmission function is shown
in the vicinity of the main resonance peak for the case of
αL ¼ αR ¼ 20, v¼0.5 and for increasing values of I. The conver-
gence to Chase approximation is slow and considerable deviations
are observed even for I¼500. It is clear that for very narrow
resonances the Chase approximation will fail even for very heavy
molecules.

This behavior is well known from electron scattering from
molecules in the gas phase [16]. It is possible to construct an

alternative approximation in this case, which is based on the fact
that the transmission function is dominated by a single resonance.
This approach was first proposed to describe the many body
discrete states coupled to a continuum through configuration
interaction [20,26–28], but Domcke [29] have shown that it can
also be applied to single-particle potential scattering.

In the case of a two dimensional potential model, it is possible
to construct the discrete-state-in-continuum model from first
principles [30], but in this work we prefer much simpler approach,
the local complex potential (LCP) approximation, which is applic-
able in the case of narrow resonance peaks far from threshold (i. e.
vo1; Γ5Er). The construction of the discrete state model
proceeds as follows. We parameterize the electron dynamics for
each fixed vibrational coordinate φ by three parameters: the
resonance energy ErðφÞ and the partial resonance widths ΓlðφÞ
describing the coupling strength of the discrete state relative to
left (l¼L) and the right (l¼R) electrode. These parameters are
found fitting (for each φ separately) the 1D transmission function
pT ðφ; EÞ to the famous Breit–Wigner formula:

pT ðEÞ ¼
ΓLΓR

ðE�ErÞ2þ 1
2ðΓLþΓRÞ
� �2: ð23Þ

Knowing the parameterization of the discrete state model the
transmission function can be constructed from the formula (ana-
logical formula is known in electron scattering from molecules in
gas phase [31,16])

PT ;LCP
mfmi

¼ 〈mf j
ffiffiffiffiffiffi
ΓR

p
Eþ 1

2I
∂2

∂φ2�Erþ i
2
½ΓLþΓR�

� 	�1 ffiffiffiffiffiffi
ΓL

p
jmi〉

�����
�����
2

: ð24Þ

We have to keep in mind that the quantities Er, Γl in this
expression are functions of φ, i.e. they are matrices in the free
rotor basis jm〉.

To show the performance of the LCP approximation we have
calculated the full transmission functions for the same model as in
Fig. 7. The transmissions for LCP approximation (short dashes) are
compared with the full calculation (solid line) and with the Chase
approximation (long dashes) in Fig. 8 in logarithmic scale. Observe
that the LCP approximation gives perfect description of the shape
of the resonance peak (within the linewidth), but it fails to
reproduce the background transmission away from resonance.
This is minor difficulty, since the background transmission is very
small and it can well be reproduced by the Chase approximation
instead. To conclude the Chase approximation combined with LCP
model gives a very good understanding of the transmission
functions in resonance regime.

3.4. Excitation of the torsional vibrations

We have studied only the total transmission probabilities so far.
The individual contributions (12) are plotted in Fig. 9. The LCP
model gives these contributions directly (24). The Chase approx-
imation (22) has to be modified for this purpose

PT ;Chase
mfmi

ðEÞ ¼
Z
ϕmf

ðφÞnST ðφ; EÞϕmi
ðφÞ dφ

����
����
2

; ð25Þ

where ST is the S-matrix element for the transmission (the
expression inside the absolute value in Eq. (18)). Resulting indivi-
dual transmissions in the Chase and LCP approximations are also
shown in Fig. 9. The transmission function is shown for three
values of final angular momentum mf¼0, 1, 2. We observe the
same behavior as for the total transmissions. The LCP approximation
works very well inside the resonance peak, while the background
transmission is very well described in Chase approximation. We also
see that the excitation of the torsional vibrations is very efficient. The
contributions 0-1, 0-2 for transmission functions including the
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excitation of the first and second state respectively reach the peak
values comparable to the elastic contribution 0-0. This is conse-
quence of the fact that the typical lifetime of the resonance
1=ΓC200 estimated from formula (21) is of comparable size to
the typical period � 2πI of the torsional vibrations for the
chosen model.

The excitation of the torsional vibrations becomes asymmetric
for the chiral model with ϕ0a0 mod π. It is demonstrated in
Fig. 10. The mean value of the angular momentum (15) becomes
relatively high near the resonance peak. The direction of the

rotations (given by sign of 〈m〉) can be controlled by selecting
the value of ϕ0. In the example selected in the figure the two
values correspond to ϕ0 and π�ϕ0. The direction of the torsional
vibrations can thus be inverted by interchanging the left and right
electrodes, i.e. by inverting the direction of the current.

3.5. Threshold structures in strong coupling regime

The regime with v41 is interesting by itself. We cannot apply
the LCP approximation in this regime, even for large value of α,
since the resonance is transformed into bound state with changing
value of φ. This case can still be treated with the model of discrete
state in continuum [16,30], but both the nonlocality and energy
dependence of Γ cannot be neglected. It is beyond scope of the
present article to study this approximation. We will restrict to the
presentation of some interesting phenomena in this regime with
the full calculation.

We show the total transmission function for α¼ 1, v¼5 and
ϕ0 ¼ π in Fig. 11. The transmission is shown for three values of the
angular momentum and the Chase approximation is also shown.
The Chase approximation describes the transmission quite well for
the energies E41. The transmission for the 1D model is also
shown in Fig. 12. Comparing the two figures we understand the
nature of the main peak at EC1:3 and also the weak peak at
EC0:7. The exact curves also exhibit pronounced narrow struc-
tures at small energies, which cannot be comprehended within
Chase approximation.

To understand better nature of these structures we expand the
low-energy region in Fig. 13. Only the transmission for I¼100 is
shown there in logarithmic scale. There is a narrow peak at
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EC0:02. Both the position and the size of this peak are extremely
sensitive to the parameters of the model. To show this we included
a calculation with slightly perturbed angular momentum
I¼ 10071. The peak is shifted towards lower energies with
increasing mass and its maximum increases until it reaches 1, i.e.
the maximum value permitted by unitarity. Closer investigation
shows that the peak origins in the strong coupling of the electronic
and vibrational motion. Functions λlðφÞ (see Eq. (2) in the first
section) attain negative values for v41. The delta barriers are then
transformed into potential wells and they can support several

vibrational states. The peaks in Fig. 13 capture the resonance
which transforms into such bound state when the mass (momen-
tum of inertia I plays the role of the mass) of the system is
increased. The large size of the peak is consequence of the
existence of the pole of the S-matrix in the vicinity of the origin.
Further increase of the mass would destroy the peak completely
but the second peak at EC0:4 would be shifted to the vicinity of
the origin. We checked that for I¼120 such narrow peak is again
present near the origin.

Similar behavior resulting from coupled electronic and vibra-
tional degrees of freedom influenced by threshold phenomena is
also observed in electron collisions with molecules [32,33].

3.6. Role of the molecular vibrational potential

The vibrational structure of the molecule has so far been
modeled with the free rotor here and we did not consider the
potential energy of the molecular vibrations in our model (1). It is
easy to add the term V0ðφÞ in (1) and in the definition of the
Hamiltonian H0 at the beginning of Section 2 to include the
potential energy of torsional vibrations. This changes the calcula-
tion procedure only slightly. We have to modify the expansion of
the wavefunctions by replacing the free rotor basis ϕmðφÞ, with the
eigenstates ~ϕmðφÞ of the operator:

� 1
2I

∂2

∂φ2þV0ðφÞ:

Its eigenenergies Em will enter Eq. (3) instead of the factor m2=2I
and also the momenta km ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE�EmÞ

p
have to be calculated

from these energies. The matrix elements of the barrier heights (8)
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have to be calculated in this new basis

ΛðlÞ
mm0 ¼

Z 2π

0

~ϕmðφÞnλlðφÞ ~ϕm0 ðφÞ dφ: ð26Þ

All the other computational details remain the same.
We do not intend to investigate the effect of the molecular

vibrational potential in this paper in systematic way. To show the
effect of the vibrational potential on the results we just discuss the
transmission function for the same model as in the last section
with I¼50. This transmission function is replotted in Fig. 14 with
red solid line. Also shown is the transmission with the vibrational
potential V0 ¼ � cos φ (purple long dashes) and V0 ¼ � sin φ
(blue short dashes). The ground state of the former is localized
close to its minimum at φ¼ 0, while the later potential has the
minimum and the ground state localized at φ¼ π=2. The transmis-
sion in the former case is characterized with sharp resonance peak
but no notable vibrational structure, the later case exhibits a large
nonresonant background and many structures. This is easily
understandable since the vibrational potential V0 confines the
system in the area where functions λLðφÞ and λRðφÞ are stationary
or fast changing respectively. The former case is thus in the
resonant regime only weakly coupled to vibrations while the later
case is in the strongly coupled nonresonant regime. This is also
reflected in the applicability of the Chase approximation (shown as
dotted lines in Fig. 14). The approximation works perfectly in the
weakly coupled regime (the dotted line is indistinguishable from
the full calculation plotted with long dashed curve), while the
approximation is not capable to describe correctly the peaks
resulting from the vibrational coupling marked with short dashes.
In the case of the free rotor, studied in the previous section, the
wave function is completely delocalized through all values of φ
and the behavior of the transmission function is somewhere
between these two extreme cases.

In general we can state that the results of the previous sections
apply also for the case with nonzero V0, but we have to consider
the restriction that V0 imposes on the values of φ probed in the
collision. The potential V0 above, with the sine/cosine shape serves
as an example of potential with single minimum, and the results
are very close to what would be obtained with the harmonic
potential, which is more frequently used to model the molecular
vibrations.

4. Conclusions and future prospects

We have discussed the transmission functions for the inelastic
tunneling of an electron through the double barrier structure in

molecular junction with coupling to torsional vibrations. The exact
transmission functions were compared to various approximation
methods, which allow separation of the full transmission problem
into sequential calculation for electronic and vibrational dynamics.

Particularly useful is the approximation of frozen vibrations
(analog of Born–Oppenheimer approximation for the scattering),
which corresponds to 1D approximation in our two dimensional
model. We have shown how this approximation may help to give
an interpretation to a structures in the transmission functions in
the limit of small energies E51=2I or small vibrational coupling
v¼ β=α51.

Even more important case in which the approximation of
frozen vibrations takes part is the Chase approximation, giving
the full transmission as an average of the 1D analytic formula (i.e.
purely electronic transport with fixed nuclei in our model) over
the vibrational wave-functions of the molecule. This approxima-
tion is exact in the limit of infinitely heavy molecule I-1. The
range of applicability of this approximation has been studied in
more details here. We have shown that the approximation fails in
the resonant regime, where it can be replaced by the projection-
operator methods, which we demonstrated on the LCP approx-
imation. We have also shown that the combination of the LCP
approximation and the Chase approximation can be used to
accurately represent the excitation functions of the different
vibrational states in the junction.

For strong vibrational coupling v41 the LCP approximation is
not well defined. It can be replaced by the method on nonlocal
resonance model [16]. It is beyond the scope of this paper to
construct and study this approximation, but it can provide the
insight in the nature of structures observed in the strong coupling
regime.

If the chiral symmetry of the junction is broken the molecular
junction can be used as molecular motor [34]. We show this
behavior also on the current model, i.e. we demonstrate that the
sign of the average angular momentum of the junction can be
controlled by the direction of the current passing through the
junction.
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